Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(empty, l) → l
f(cons(x, k), l) → g(k, l, cons(x, k))
g(a, b, c) → f(a, cons(b, c))
Q is empty.
↳ QTRS
↳ Overlay + Local Confluence
Q restricted rewrite system:
The TRS R consists of the following rules:
f(empty, l) → l
f(cons(x, k), l) → g(k, l, cons(x, k))
g(a, b, c) → f(a, cons(b, c))
Q is empty.
The TRS is overlay and locally confluent. By [19] we can switch to innermost.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f(empty, l) → l
f(cons(x, k), l) → g(k, l, cons(x, k))
g(a, b, c) → f(a, cons(b, c))
The set Q consists of the following terms:
f(empty, x0)
f(cons(x0, x1), x2)
g(x0, x1, x2)
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
F(cons(x, k), l) → G(k, l, cons(x, k))
G(a, b, c) → F(a, cons(b, c))
The TRS R consists of the following rules:
f(empty, l) → l
f(cons(x, k), l) → g(k, l, cons(x, k))
g(a, b, c) → f(a, cons(b, c))
The set Q consists of the following terms:
f(empty, x0)
f(cons(x0, x1), x2)
g(x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
F(cons(x, k), l) → G(k, l, cons(x, k))
G(a, b, c) → F(a, cons(b, c))
The TRS R consists of the following rules:
f(empty, l) → l
f(cons(x, k), l) → g(k, l, cons(x, k))
g(a, b, c) → f(a, cons(b, c))
The set Q consists of the following terms:
f(empty, x0)
f(cons(x0, x1), x2)
g(x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
Q DP problem:
The TRS P consists of the following rules:
F(cons(x, k), l) → G(k, l, cons(x, k))
G(a, b, c) → F(a, cons(b, c))
R is empty.
The set Q consists of the following terms:
f(empty, x0)
f(cons(x0, x1), x2)
g(x0, x1, x2)
We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.
f(empty, x0)
f(cons(x0, x1), x2)
g(x0, x1, x2)
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ QDPSizeChangeProof
Q DP problem:
The TRS P consists of the following rules:
F(cons(x, k), l) → G(k, l, cons(x, k))
G(a, b, c) → F(a, cons(b, c))
R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- G(a, b, c) → F(a, cons(b, c))
The graph contains the following edges 1 >= 1
- F(cons(x, k), l) → G(k, l, cons(x, k))
The graph contains the following edges 1 > 1, 2 >= 2, 1 >= 3